The angle measure between vectors remains unchanged if the systems of equations which define them are translated, scaled or rotated. Might as well check.
In the image below, N is no longer aligned with the z-axis. The surface has been rotated by an arbitrary, positive angle, φ (phi).
Phi, fie, fo fum.
Ummmmmmmmm....
Oh. Right. The math.
We have, again in two parts which may be done in any order:

The dot products:

And so, as before:
![sin θ1 = √(1 − (I•N)^2), sin θ2 = (η1/η2)√(1−(I•N)^2), cos θ2 = √(1 − (η1/η2)^2 (1 − [I•N]^2))](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ubkV09gc7qI78DW6KDFn4uzmqN6Jb7z2JmUffYZ-GktWc6ejD7TJfSf1KpF_zewuBoGE0quDtqC-XAMrSDlpJWNHcA9Kh93JyT97ykNB47WJ69LgHdzwMvYAJ-US9YWS6AYWhEHCZvd8pz1xFsSYoxtGoPDmxjhIkCr0zdnv0-yjIWyl0cyM9Arg2P77qdAGJJBAjBkaAUJT2hxW_rs_iqgm3-rEmJS7u8nWuzJDaiQqf1thvEEL5CZB6kQO3jTAxibXIsP55zVClR-RctePg6tYZA3GCmzFYnDchCBfUfOwyg1QNhaTsu5XywnbBd2DLSSbDu-WuE6eSA1X2QJ8-Vjk3PwAUsmWYA-hlP7BgpCrXw5AoHcfgr1bUagZcmpJCSBd4KEVlcTSsUIqyzkwJahjekaIgd4zn2cNeDFaFMYeuEfi4XTr4RrEMVN_atiNY16ePMR9vEi1Nhm_vbahKgS3zElW9hfao8bYiEskp-rnaJTNPwvjcNhJnOsEIJZpThRzO7Zy61WSqwKCxcZhh5U2meTbRUvExE0e4QW2AVLp_7znnJPnagU8Qr6mgX7-ZLTVKynhOMoNzS79ADlh4O7NkSzea7_AqxMMkZcx14i6BM6OmU8GdDjXCh83j20abb8wtdjg_dU1PTq866MgwId3x05-Xq9WYqxKeu_FLhcNlxN0cQp_k9n0f3XxK3Cea9f4ukQDuTjdp8Df4-48deT2uN2zNlnY0HZHGs3tONzdQ5473rKOLEX-y39S4Zr-8TF97BB3kVTJVjto2v9Oqlc2ANUC6Vl9vxPHuBSKUSvtD5LNgk72NPYxwCR1JxzN0C12cmGpJZJdVcYSaFKBq6eb12PjqY95Te6ZK2qriH675_4xVc41AuCg=s0-d)
The sign of the square root is taken positive, as defined in the last section. I makes a positive angle with N less than 90° (π/2 radians).
I. Calculate T for any η1, η2, N and I
The dot products:
And so, as before:
The sign of the square root is taken positive, as defined in the last section. I makes a positive angle with N less than 90° (π/2 radians).
II. Give T as the sum of two vectors
αI + βN = T, α, β constant:

Using Cramer's Rule:

Solve for alpha:

Solve for beta:
![β = (η1/η2)[I•N] − √(1 − (η1/η2)^2(1 − [I•N]^2) )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t9Hoi1N_ZPcf3QjN1rozSpVFfK-y_Sj04WkDKJ-p9x5su9Flx5vT73bsFOXie6vqSpmM6MbFNj24ovyEDjxQ5f7IkTXp240nxVxZfHX0Sm0GzBSsAdD-KIfs49iO49Wk_sMa0X0d0kLry4uOHvlfKnzbbwXoRw99MtiB9NqEUzpCGGDtGUbmUiVyEB7Pn89M6KBuNvAGtpM37vjrSglPK9_3yTRJPofoAvx96FlbdxPO_njHrbCqY2UerPC0x-9PG5tMQy9bqH7JLWeBAQo8U8g_hmYCk1gfv4UNvY9Zs5B84hm2yzaVmeSB2hpkLdtir5GMNfo0V8KMnVYhohp6Tjqh32vHpssTYfMdLDQHZ8DgpuxJ1MOPPLdSaFpNpWcTL-ocugyUTPBIOY9ZIqRS8w8ov4v51oW4fWSQsIcas8n43Da_UbEaOLKZLNTjKTNtTnNBdjdL2V7VoX1nO7v5436BwBiV8lxu8t2nzrY1FUcDtVcAJGMku9PO63walMWOKbOrUNoCWwogBo_QZh8ieluWEZDst4jHonOuLf5pnded--EaxdtmGbOMqE6hHgXeLXBWdFbj8TZ_WWip2VbYgc-fi56Tks2xrG-G9J5OCzPZP1yNAzZnMUIQpanGzsdYZbamwkwB8HLjL7E9dr_sxdlggU5gTZqLC3k3Xr3K_g-Q3JmVAO2bhqJ-_G663__epjYexEjpA_WzP9XoRdoMx2f4btEC4rlk-mxF8IhxmJZHgHsTP1fxHEkd8zhtWqaoFw1EzTKkFp5E4bEkMGvBYUxWDrAsKNd7th6tQ2s7ON-wM0XfzSIexQgSawjlnuP1E5uXKuZYRuirKgGUDQcbR4qxVo_gt6qHWy1uMvgypt9Es8Juw60b57WWzbpyUXnGBm5CA3ZLMSpgqPMj1DcjKK1IRje_c6XbSHyem5QGb-CIS1PLlJIufMxgmXln9ekBmxUWcS6lhXDy7HI817cHujjlbPWCRzqgmGB2-Y0pxcrHovjsNetp1zGwzGTN93u9mdnjEFdKK_wcgjduAEea2n1cpZZen1BOdFLjjRrjZnHV_9ExIzHoio3V0Wm7UUNUUoj5pilA29zsRNWAvG3k_tkw3s6hgH0tkWdJJ6fDcRAQUF9mqdYDFymmKrPdFyaTP-0in-NddjGwmkxy9uNHEQCyZdU1i0dFXuHuu5GkVXacYjyxMy9ILNVtAVUhrFLRqtuJDAqKFOWUum_yuw0MIXAewt7ynysF7sPR7jdM8NHyLhEFWkjipN7eEaMijJE3EQ4Tg4Uq5VlkFdBLlFcaUJ-60kcadpMJet_gLu-Aie9f5IYfPY4bEL0tauHll4RcNbj1J74MjkZ32465tMNpbXxg_rSD7zslbVpCMNjC8vAe-KBxPJcXRWSNyvyT315YbYXLnaRTH9BbiXPKsniQk8ywLEM6IE4EdKEIt7d7qd0od_4Lszx7TkPo9vBVkbuneQzdGce6LrB3TiAoTqsNa30Ha5VoVsU_EETSfAAwBaLnriLct1tO8nOr6075nTBac_D_kgvAtElFIVdagpVdXktE4HCroI1oQoRv9f0G8imRWb-WNoWWROZwYwTHp_9iBhVXr9oGg=s0-d)
Radness. And at last:
![T = αI + βN = −(η1/η2)I + ( (η1/η2)[I•N] − √(1 − (η1/η2)^2(1 − [I•N]^2) ) ) N](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uYuZcyqLIOV8h0tUghAzHGzzqGBuVbdhKvQmqxFinG0QL_wsOC3lJQ2k0VTSQSh9ozqiR1Q8rJ3dX4m6jpSlfNasISb3keiixiRenJAu7JdYOQkjPBLSPaSGLrbEs3T7RWYog4n8gV1tB1eXRZaDQAnMtlRH_17AM6iyOCYruKdtz6GTD5w8S9SGIkeTgsSqiu5_3KL75QHfMyjdLzfbOIErDODx9-i99ZT32cucughuJVdEtDqjBzCoiOWvOCAwKNGAVG6B6k9Zv7q03bJSjQ2XMHTRsb9J-h4G2Ap7NQ4n434LE0b9Ju5RfSiWokxNDEFHGrU4jhyleumxIr6m0qLCpsjJYD13AUm4eHkFC3K-c35dRSDfLUmBCyjSEJLGGWNM5U0d4Mh4u0kV0lOGsXalKPbFKtsF6ubULtOCVmLSYKKU_wv5d9HCl4lEVq3XNocAqaosCjXQ4FPbW0Zno4LkdKmjJ-7fdIKIjtMc7BZowJMfqNaE0F-bo6A2zwG7t4NGrLONTblUYndV9jQm0JgDidGQm7A0kpesSujqEMzTxO=s0-d)
...being the same equation as Parts I and II. So don't do it this way, because it's harder.
(It's over now.)
Using Cramer's Rule:
Solve for alpha:
Solve for beta:
Radness. And at last:
THE RESULT
...being the same equation as Parts I and II. So don't do it this way, because it's harder.
(It's over now.)
{CodeCogs you are the warp and weft of my Latex heart}
{<−− Part III} {Part V upcoming}
No comments:
Post a Comment