The angle measure between vectors remains unchanged if the systems of equations which define them are translated, scaled or rotated. Might as well check.
In the image below, N is no longer aligned with the z-axis. The surface has been rotated by an arbitrary, positive angle, φ (phi).
Phi, fie, fo fum.
Ummmmmmmmm....
Oh. Right. The math.
We have, again in two parts which may be done in any order:

The dot products:

And so, as before:
![sin θ1 = √(1 − (I•N)^2), sin θ2 = (η1/η2)√(1−(I•N)^2), cos θ2 = √(1 − (η1/η2)^2 (1 − [I•N]^2))](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s-K-SO8NyFe4FP1zzpwXpoh4iBUGQkr61PIFSncs1gTFSeVA06S3H2kheX8sw2zvYVFFjui-Kt0eQxExc1eb-Z1W4GFJEgLCCjgEF60-jvog2ALuyo-RlCXVMIBNt_pYksCILy-Ry8qiLQ2kz0GJwzgy7ozdxbLz4aO837bw_3bJTplQ_FlrnXPQRlPXOp-2u-6Fp8U8hi3S1L1oLoOejV2lKOb3kgWOMkii0IH6PmC5LF9qARqZ3eLFUUxynYJLY7scZoUEh-5XAWdgriZ4O6knrik-C7jYIaVpj8JG6oSM6dstk2Fx5nlpSe-2Y2rPokXwnOxbo1TZVb_Q8q-YIHrt-JU4GIMmFZMRIzzRyy6PN6P_hbRsEnEF1OujztUbnDkfg6WxwBtNRRJDE9hsx0dtsYzcVgZAjf1VcSs_lmXU8BQsjp9EOHlu3WVVJX-b4XO_GWhAhCOpMtMHkS_bBNEyjHSucdIS2ZC4CYeJhTlvK-4XVtAt4I44AtaOrVwYqR8Stnf5T_yv0UsImTejmihOl608DjHDYR37-yX3wXeUzBCnMY4awLwkt-sutjMEibMgP9qIJpjOLxv-j8m1vsrQQXXPPFjG_n5R6xHQXhQYNMld-qkPBAAeKm04IcJuMGVqg6QOQiORn3E7tMUurQFpjDmwk1VENJfkf0p5aO-xxowESJ3Rgq3eAjvNwxX6ndVuNYzR-9A7C0OfP7lc-IQwxnxZZ4wsDC6tiHmudGk_o03aGi9xGT__qp1lin7fxduBkCc6KKUlMdLC-ZxRuR18owx9TNr2HGiF_7p0xxkmdpLQgWSzgBwLwtfmR1ioNjc7PU9pecoj7evUUGHe0UXLGihXX366_aGgPYbBBLh-cCWaYaRfH8kg=s0-d)
The sign of the square root is taken positive, as defined in the last section. I makes a positive angle with N less than 90° (π/2 radians).
I. Calculate T for any η1, η2, N and I
The dot products:
And so, as before:
The sign of the square root is taken positive, as defined in the last section. I makes a positive angle with N less than 90° (π/2 radians).
II. Give T as the sum of two vectors
αI + βN = T, α, β constant:

Using Cramer's Rule:

Solve for alpha:

Solve for beta:
![β = (η1/η2)[I•N] − √(1 − (η1/η2)^2(1 − [I•N]^2) )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_ujV7gCggOn1vhmxpqxxGtkXyX1yCDzfdNQP-EnRQ4PhlXhITd_nS-SdOHVMcPUmxGm0mXDfNIuaWCnEaUb_DXZkWWQsDQlljvRJPHtuDtOTSc9B6I13CuNZTUNcbjLOD7NH-ZrcuDl2V84_xIRs6CZWIZNyDL7R2z3QM_6nNo-oYi3Z_O3tJRFXr_UgZpQZSbwCD3a1V4gTHU4njoaDXCLm2fo0m8Icb7-DNeqJY60g3y0lR0bvV7PTVo4gsEfzSA6bUz3VSiXCbSqHFXpgtWQTLA10j0RQxak-NhjaV-x2BhDmdGPO8g-li2g-O51Zu1iJciZ-4KJ1fWYFLl88ObLsO6ooHHOznu3CnVVR_grLhvblHo1y_fpJ5jXdeR7OIXbEfM-7z5wsVcbGKApxlribObUzRQmpZZQWCU28ZMWHt7rBgZFY1dt52vXnPFCUVEMNGTmjJ5jBS0c4x10KgLeDCcvKNyK6ewsADSqV0YZ_3iMjxeWZCbR4OfvyRp-JONdEvcyPCxf5ZDTEBkAi8ES3gFFlsg4mjBon-8oUN7szjHfblk81OGZVzd4GNvDM3MSQjq4g0AHWwznI1qewGMbl0H8obZZmJVcUcHCu5LgygqTM4FfQYI52-17W4rYMjT7e6U2AWUL56drF2ZinTjf_23JazrDvoH7RUjo0tGM7FV1f7X0bnxPgZck87zMsTc3cQpcDN-LxQg_A23uT_on9vnVsjrgOvIF9-OAfe33mCWKK-fDAKn48mAkmMGLxXujk1GlAcJ4rci6ylFNkDGjJIfLGSvAhk0fIp_w2jlBi0OqjIEsuBmtoxLEVqkiAjjiMMoOLllWBzZIuUMAQo97VQCALpkOl695Qi39vMHLq4qQJApC8LpVphzEDJlZdQ6tsxuk0Nt90a31Xl0dTmPaV00jNO_LFmHw1aaTpGpv4zC2RdDYgr-mRY66ES8T8QLjA2Ib3vJkDcmJbfYRsMc3HlgsUKX2xmR-RiiFSz6yEZyvtqjGoOA_X2wpc3W8EKKovdm5y3-lSaM8D_Rxj8sTW0n1mwPc4nalq9XXwm9_J-SI172Jbi0M8QIeK0zxve6cynlRLTShaocBbf6inqBbLAs0qdINAC5_qZQg84wyGS18PxAK47964XVaAQQ_LMNeSyCPI05araxK5-ZaW-y7h9zFRLtD9b0pifHl23FxYW-EmBmP4xwHtkUBpnEn3KWJTRTShQzhjaGhzXVwSy3lhAMKBbjm-qrzDSAZecXAzJFccm7ioSxAfzEmvz1ecGsUbs8qp1S8cwqGwduILu8321BoUf7xBdNy2dsPZgn5K3mpedZoGdJgjux_JZ0doPk_h5gpDvTqTGSZbkbydiUJATknpxiHsNp20lC2tDZFhtsvSJPSgWMpt1vm9NVeCY6zqwKjxfMqXTZhRPSDrWCJB3teAkbZ7MNd-rUdZxsL633L1oCyA5SVzsj_WTjcJ0P5SVxnG1qZs9hMX9ErNr9nxB1_mNHr7Q872cyJbhYYF74s1S0u02xdq067dhzhNh4YdZuOXmaFpHmWBT6T3B-jvl7lDCiJm8j5ID7LNMmQwXcpZXgkhtfEOmyg3VHKb7wS-SZmCQE=s0-d)
Radness. And at last:
![T = αI + βN = −(η1/η2)I + ( (η1/η2)[I•N] − √(1 − (η1/η2)^2(1 − [I•N]^2) ) ) N](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_t5jW8I5OhoHN9RrYccrVRzpF3v1FIj5H-X4uqmELb61io0aZPPyAAPFkoQEIby2ntGFo2W9ebrYsOonn14JLc6xjuYreWVmtKK_fBD4c8-2vPoYkrf0xdimhX8PHsAUP8Vv-hnJWrxGTrL_gmru6C6nxuDAVg-menOUZ-gPzaw6IitKJo80XN8A6JKf0rtZkXdpNXxGfSrrBNfjM8LhNAL6torQD5o9tRvAP34jDOuugrydlsQ0qGZ0TfUB640wdV_skbeav9Nbz6H6FncvhD60L6B9QDziMKaS8zwB9c7Kli4SioFCIHpT20u-mTeq6YDIumfev--j63eclV-sAAomzevNCrtguYidPTAMwGwxTu8qB3Nz-6PdV4t1AJYGzVbXUmeHobvCHQYF6RzRXjEHCI-HkD45Rs61dyUtJeSJ5DDJWDMvZkYEA-xNTP3EvkqBb5larj45x54S58v2STSiWn673BEEVQoVy626NliOFcjc6QtAOHWmB9VXPpr43sJ1OtSm-uIoN14nHr6XQE6vym3WsCocRTuc3c2o-VzsxyT=s0-d)
...being the same equation as Parts I and II. So don't do it this way, because it's harder.
(It's over now.)
Using Cramer's Rule:
Solve for alpha:
Solve for beta:
Radness. And at last:
THE RESULT
...being the same equation as Parts I and II. So don't do it this way, because it's harder.
(It's over now.)
{CodeCogs you are the warp and weft of my Latex heart}
{<−− Part III} {Part V upcoming}

No comments:
Post a Comment